Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Control of Clostridium difficile Physiopathology in Response to Cysteine Availability.

Identifieur interne : 001043 ( Main/Exploration ); précédent : 001042; suivant : 001044

Control of Clostridium difficile Physiopathology in Response to Cysteine Availability.

Auteurs : Thomas Dubois [France] ; Marie Dancer-Thibonnier [France] ; Marc Monot [France] ; Audrey Hamiot [France] ; Laurent Bouillaut [États-Unis] ; Olga Soutourina [France] ; Isabelle Martin-Verstraete [France] ; Bruno Dupuy [France]

Source :

RBID : pubmed:27297391

Descripteurs français

English descriptors

Abstract

The pathogenicity of Clostridium difficile is linked to its ability to produce two toxins: TcdA and TcdB. The level of toxin synthesis is influenced by environmental signals, such as phosphotransferase system (PTS) sugars, biotin, and amino acids, especially cysteine. To understand the molecular mechanisms of cysteine-dependent repression of toxin production, we reconstructed the sulfur metabolism pathways of C. difficile strain 630 in silico and validated some of them by testing C. difficile growth in the presence of various sulfur sources. High levels of sulfide and pyruvate were produced in the presence of 10 mM cysteine, indicating that cysteine is actively catabolized by cysteine desulfhydrases. Using a transcriptomic approach, we analyzed cysteine-dependent control of gene expression and showed that cysteine modulates the expression of genes involved in cysteine metabolism, amino acid biosynthesis, fermentation, energy metabolism, iron acquisition, and the stress response. Additionally, a sigma factor (SigL) and global regulators (CcpA, CodY, and Fur) were tested to elucidate their roles in the cysteine-dependent regulation of toxin production. Among these regulators, only sigL inactivation resulted in the derepression of toxin gene expression in the presence of cysteine. Interestingly, the sigL mutant produced less pyruvate and H2S than the wild-type strain. Unlike cysteine, the addition of 10 mM pyruvate to the medium for a short time during the growth of the wild-type and sigL mutant strains reduced expression of the toxin genes, indicating that cysteine-dependent repression of toxin production is mainly due to the accumulation of cysteine by-products during growth. Finally, we showed that the effect of pyruvate on toxin gene expression is mediated at least in part by the two-component system CD2602-CD2601.

DOI: 10.1128/IAI.00121-16
PubMed: 27297391
PubMed Central: PMC4962627


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Control of Clostridium difficile Physiopathology in Response to Cysteine Availability.</title>
<author>
<name sortKey="Dubois, Thomas" sort="Dubois, Thomas" uniqKey="Dubois T" first="Thomas" last="Dubois">Thomas Dubois</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dancer Thibonnier, Marie" sort="Dancer Thibonnier, Marie" uniqKey="Dancer Thibonnier M" first="Marie" last="Dancer-Thibonnier">Marie Dancer-Thibonnier</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Monot, Marc" sort="Monot, Marc" uniqKey="Monot M" first="Marc" last="Monot">Marc Monot</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hamiot, Audrey" sort="Hamiot, Audrey" uniqKey="Hamiot A" first="Audrey" last="Hamiot">Audrey Hamiot</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bouillaut, Laurent" sort="Bouillaut, Laurent" uniqKey="Bouillaut L" first="Laurent" last="Bouillaut">Laurent Bouillaut</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Soutourina, Olga" sort="Soutourina, Olga" uniqKey="Soutourina O" first="Olga" last="Soutourina">Olga Soutourina</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France Université Paris 7-Denis Diderot, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France Université Paris 7-Denis Diderot, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Martin Verstraete, Isabelle" sort="Martin Verstraete, Isabelle" uniqKey="Martin Verstraete I" first="Isabelle" last="Martin-Verstraete">Isabelle Martin-Verstraete</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France Université Paris 7-Denis Diderot, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France Université Paris 7-Denis Diderot, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dupuy, Bruno" sort="Dupuy, Bruno" uniqKey="Dupuy B" first="Bruno" last="Dupuy">Bruno Dupuy</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France bdupuy@pasteur.fr.</nlm:affiliation>
<country wicri:rule="url">France</country>
<wicri:regionArea>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27297391</idno>
<idno type="pmid">27297391</idno>
<idno type="doi">10.1128/IAI.00121-16</idno>
<idno type="pmc">PMC4962627</idno>
<idno type="wicri:Area/Main/Corpus">000E99</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E99</idno>
<idno type="wicri:Area/Main/Curation">000E99</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E99</idno>
<idno type="wicri:Area/Main/Exploration">000E99</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Control of Clostridium difficile Physiopathology in Response to Cysteine Availability.</title>
<author>
<name sortKey="Dubois, Thomas" sort="Dubois, Thomas" uniqKey="Dubois T" first="Thomas" last="Dubois">Thomas Dubois</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dancer Thibonnier, Marie" sort="Dancer Thibonnier, Marie" uniqKey="Dancer Thibonnier M" first="Marie" last="Dancer-Thibonnier">Marie Dancer-Thibonnier</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Monot, Marc" sort="Monot, Marc" uniqKey="Monot M" first="Marc" last="Monot">Marc Monot</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hamiot, Audrey" sort="Hamiot, Audrey" uniqKey="Hamiot A" first="Audrey" last="Hamiot">Audrey Hamiot</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bouillaut, Laurent" sort="Bouillaut, Laurent" uniqKey="Bouillaut L" first="Laurent" last="Bouillaut">Laurent Bouillaut</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Soutourina, Olga" sort="Soutourina, Olga" uniqKey="Soutourina O" first="Olga" last="Soutourina">Olga Soutourina</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France Université Paris 7-Denis Diderot, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France Université Paris 7-Denis Diderot, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Martin Verstraete, Isabelle" sort="Martin Verstraete, Isabelle" uniqKey="Martin Verstraete I" first="Isabelle" last="Martin-Verstraete">Isabelle Martin-Verstraete</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France Université Paris 7-Denis Diderot, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France Université Paris 7-Denis Diderot, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dupuy, Bruno" sort="Dupuy, Bruno" uniqKey="Dupuy B" first="Bruno" last="Dupuy">Bruno Dupuy</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France bdupuy@pasteur.fr.</nlm:affiliation>
<country wicri:rule="url">France</country>
<wicri:regionArea>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Infection and immunity</title>
<idno type="eISSN">1098-5522</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Bacterial Toxins (biosynthesis)</term>
<term>Bacterial Toxins (genetics)</term>
<term>Cell Line (MeSH)</term>
<term>Chlorocebus aethiops (MeSH)</term>
<term>Clostridium difficile (physiology)</term>
<term>Cysteine (metabolism)</term>
<term>Energy Metabolism (genetics)</term>
<term>Enterocolitis, Pseudomembranous (microbiology)</term>
<term>Gene Expression Regulation, Bacterial (MeSH)</term>
<term>Homocysteine (metabolism)</term>
<term>Hydrogen Sulfide (metabolism)</term>
<term>Intracellular Space (metabolism)</term>
<term>Metabolic Networks and Pathways (MeSH)</term>
<term>Pyruvic Acid (metabolism)</term>
<term>Vero Cells (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide pyruvique (métabolisme)</term>
<term>Acides aminés (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Cellules Vero (MeSH)</term>
<term>Clostridium difficile (physiologie)</term>
<term>Cystéine (métabolisme)</term>
<term>Entérocolite pseudomembraneuse (microbiologie)</term>
<term>Espace intracellulaire (métabolisme)</term>
<term>Homocystéine (métabolisme)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Métabolisme énergétique (génétique)</term>
<term>Régulation de l'expression des gènes bactériens (MeSH)</term>
<term>Sulfure d'hydrogène (métabolisme)</term>
<term>Toxines bactériennes (biosynthèse)</term>
<term>Toxines bactériennes (génétique)</term>
<term>Voies et réseaux métaboliques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Bacterial Toxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Toxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>Cysteine</term>
<term>Homocysteine</term>
<term>Hydrogen Sulfide</term>
<term>Pyruvic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Toxines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Energy Metabolism</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Métabolisme énergétique</term>
<term>Toxines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Intracellular Space</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Entérocolite pseudomembraneuse</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Enterocolitis, Pseudomembranous</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide pyruvique</term>
<term>Acides aminés</term>
<term>Cystéine</term>
<term>Espace intracellulaire</term>
<term>Homocystéine</term>
<term>Sulfure d'hydrogène</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Clostridium difficile</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Clostridium difficile</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Chlorocebus aethiops</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Metabolic Networks and Pathways</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules Vero</term>
<term>Lignée cellulaire</term>
<term>Régulation de l'expression des gènes bactériens</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The pathogenicity of Clostridium difficile is linked to its ability to produce two toxins: TcdA and TcdB. The level of toxin synthesis is influenced by environmental signals, such as phosphotransferase system (PTS) sugars, biotin, and amino acids, especially cysteine. To understand the molecular mechanisms of cysteine-dependent repression of toxin production, we reconstructed the sulfur metabolism pathways of C. difficile strain 630 in silico and validated some of them by testing C. difficile growth in the presence of various sulfur sources. High levels of sulfide and pyruvate were produced in the presence of 10 mM cysteine, indicating that cysteine is actively catabolized by cysteine desulfhydrases. Using a transcriptomic approach, we analyzed cysteine-dependent control of gene expression and showed that cysteine modulates the expression of genes involved in cysteine metabolism, amino acid biosynthesis, fermentation, energy metabolism, iron acquisition, and the stress response. Additionally, a sigma factor (SigL) and global regulators (CcpA, CodY, and Fur) were tested to elucidate their roles in the cysteine-dependent regulation of toxin production. Among these regulators, only sigL inactivation resulted in the derepression of toxin gene expression in the presence of cysteine. Interestingly, the sigL mutant produced less pyruvate and H2S than the wild-type strain. Unlike cysteine, the addition of 10 mM pyruvate to the medium for a short time during the growth of the wild-type and sigL mutant strains reduced expression of the toxin genes, indicating that cysteine-dependent repression of toxin production is mainly due to the accumulation of cysteine by-products during growth. Finally, we showed that the effect of pyruvate on toxin gene expression is mediated at least in part by the two-component system CD2602-CD2601.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27297391</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5522</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>84</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2016</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>Infection and immunity</Title>
<ISOAbbreviation>Infect Immun</ISOAbbreviation>
</Journal>
<ArticleTitle>Control of Clostridium difficile Physiopathology in Response to Cysteine Availability.</ArticleTitle>
<Pagination>
<MedlinePgn>2389-405</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/IAI.00121-16</ELocationID>
<Abstract>
<AbstractText>The pathogenicity of Clostridium difficile is linked to its ability to produce two toxins: TcdA and TcdB. The level of toxin synthesis is influenced by environmental signals, such as phosphotransferase system (PTS) sugars, biotin, and amino acids, especially cysteine. To understand the molecular mechanisms of cysteine-dependent repression of toxin production, we reconstructed the sulfur metabolism pathways of C. difficile strain 630 in silico and validated some of them by testing C. difficile growth in the presence of various sulfur sources. High levels of sulfide and pyruvate were produced in the presence of 10 mM cysteine, indicating that cysteine is actively catabolized by cysteine desulfhydrases. Using a transcriptomic approach, we analyzed cysteine-dependent control of gene expression and showed that cysteine modulates the expression of genes involved in cysteine metabolism, amino acid biosynthesis, fermentation, energy metabolism, iron acquisition, and the stress response. Additionally, a sigma factor (SigL) and global regulators (CcpA, CodY, and Fur) were tested to elucidate their roles in the cysteine-dependent regulation of toxin production. Among these regulators, only sigL inactivation resulted in the derepression of toxin gene expression in the presence of cysteine. Interestingly, the sigL mutant produced less pyruvate and H2S than the wild-type strain. Unlike cysteine, the addition of 10 mM pyruvate to the medium for a short time during the growth of the wild-type and sigL mutant strains reduced expression of the toxin genes, indicating that cysteine-dependent repression of toxin production is mainly due to the accumulation of cysteine by-products during growth. Finally, we showed that the effect of pyruvate on toxin gene expression is mediated at least in part by the two-component system CD2602-CD2601.</AbstractText>
<CopyrightInformation>Copyright © 2016, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dubois</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dancer-Thibonnier</LastName>
<ForeName>Marie</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Monot</LastName>
<ForeName>Marc</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hamiot</LastName>
<ForeName>Audrey</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bouillaut</LastName>
<ForeName>Laurent</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Soutourina</LastName>
<ForeName>Olga</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France Université Paris 7-Denis Diderot, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martin-Verstraete</LastName>
<ForeName>Isabelle</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France Université Paris 7-Denis Diderot, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dupuy</LastName>
<ForeName>Bruno</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France bdupuy@pasteur.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM042219</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>07</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Infect Immun</MedlineTA>
<NlmUniqueID>0246127</NlmUniqueID>
<ISSNLinking>0019-9567</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001427">Bacterial Toxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0LVT1QZ0BA</RegistryNumber>
<NameOfSubstance UI="D006710">Homocysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8558G7RUTR</RegistryNumber>
<NameOfSubstance UI="D019289">Pyruvic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>YY9FVM7NSN</RegistryNumber>
<NameOfSubstance UI="D006862">Hydrogen Sulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001427" MajorTopicYN="N">Bacterial Toxins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016360" MajorTopicYN="N">Clostridium difficile</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004734" MajorTopicYN="N">Energy Metabolism</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004761" MajorTopicYN="N">Enterocolitis, Pseudomembranous</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006710" MajorTopicYN="N">Homocysteine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006862" MajorTopicYN="N">Hydrogen Sulfide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042541" MajorTopicYN="N">Intracellular Space</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019289" MajorTopicYN="N">Pyruvic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27297391</ArticleId>
<ArticleId IdType="pii">IAI.00121-16</ArticleId>
<ArticleId IdType="doi">10.1128/IAI.00121-16</ArticleId>
<ArticleId IdType="pmc">PMC4962627</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Bacteriol. 2004 Aug;186(15):4875-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15262924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2010 Oct;192(20):5350-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 May 13;6(5):e1000894</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20485570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 Jan;27(1):107-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9466260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2010 Apr;78(4):1618-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20100857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2007 Jun;20(3-4):485-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17216355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2006 Feb;44(2):353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16455883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Nov 1;375(Pt 3):745-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12940772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Jun;64(5):1274-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17542920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Naturwissenschaften. 2006 Jun;93(6):259-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16555095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Microbiol. 2012 Oct;32(1):152-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22850387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Enzymol Relat Areas Mol Biol. 2000;74:129-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10800595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Jan;189(1):187-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17056751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Dec;188(24):8487-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2015 Sep;197(18):2930-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26148711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Environ Res. 2008 Apr;80(4):380-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18536490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2011 Feb;79(4):882-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21299645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Jun;187(11):3889-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15901718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2008 Nov;154(Pt 11):3430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18957596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Nov;185(22):6592-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14594832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Sep;64(9):3327-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9726878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Jul;73(2):194-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19508281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2009 Jul;78(1):79-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19445976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2006 Oct;263(1):54-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16958851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jul;7(7):e1002036</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21811406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2015 Feb 24;6(2):e02383</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25714712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2007 Sep;70(3):452-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17658189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Nov;40(21):10701-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22989714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2003 Dec;31(4):265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 May 8;98(10):5844-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11320220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Jul;38(7):779-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16804543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2003 Apr;71(4):1784-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2004 Mar;155(2):80-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14990259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2000 Dec;41(6):441-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(6):e1002727</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22685398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013 May;9(5):e1003493</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23675309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24445449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jun 23;32(11):3340-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2010 Jul;23(3):529-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20610822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2010 Sep 07;10:234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20822510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Aug 27;573(1-3):83-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15327980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2007 Apr;69(1):70-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17250912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2007 Jan;20(1):164-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17223627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2013 Oct 02;3:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24106689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2009 Mar;73(1):36-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19258532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Dec 19;283(51):35551-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18974048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 May;188(10):3664-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16672620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2012 Sep 11;11:122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22963408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Jul;193(13):3186-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Oct;7(10):e1002317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22022270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Aug 01;12:385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21806785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Nov;74(4):956-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19818015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2010 Dec;192(24):6357-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2015 Dec 18;15:281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26680234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jan;72(1):946-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16391141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Microbiol. 2005 Feb;54(Pt 2):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15673506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Mar;188(6):2184-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16513748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2008 Mar;76(3):1059-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18195023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Oct;66(1):206-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17725558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2010 Oct;192(20):5304-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2008 Apr;14(4):717-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18359782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Oct;36(18):5955-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18812398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Feb;193(4):944-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21169490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Jan;194(2):368-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22081387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2012 Jul;158(Pt 7):1918-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22556358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2013 Feb;195(4):844-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23222730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2008 Jun;190(12 ):4233-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2004 May;150(Pt 5):1581-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15133119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 May-Jun;8(5-6):753-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Jul;71(7):4149-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16000837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Sep;61(5):1335-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16925561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Aug 5;286(31):27483-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Oct 11;11:555</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20937090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2005 Feb;87(2):231-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15760717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Microbiol. 2008 Jun;57(Pt 6):732-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18480330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2015 Mar;83(3):934-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25534943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2001 Nov;69(11):6823-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Dec;191(23 ):7296-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19783633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2011 Feb;14(1):92-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21215681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Jul;194(13):3561-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22689245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2014 Sep;196(18):3234-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24982306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2013 Feb;195(4):807-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23222720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1981 Feb;145(2):1031-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7007336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2000 Oct;68(10):5881-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10992498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2002 Dec;975:202-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12538166</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Île-de-France">
<name sortKey="Dubois, Thomas" sort="Dubois, Thomas" uniqKey="Dubois T" first="Thomas" last="Dubois">Thomas Dubois</name>
</region>
<name sortKey="Dancer Thibonnier, Marie" sort="Dancer Thibonnier, Marie" uniqKey="Dancer Thibonnier M" first="Marie" last="Dancer-Thibonnier">Marie Dancer-Thibonnier</name>
<name sortKey="Dupuy, Bruno" sort="Dupuy, Bruno" uniqKey="Dupuy B" first="Bruno" last="Dupuy">Bruno Dupuy</name>
<name sortKey="Hamiot, Audrey" sort="Hamiot, Audrey" uniqKey="Hamiot A" first="Audrey" last="Hamiot">Audrey Hamiot</name>
<name sortKey="Martin Verstraete, Isabelle" sort="Martin Verstraete, Isabelle" uniqKey="Martin Verstraete I" first="Isabelle" last="Martin-Verstraete">Isabelle Martin-Verstraete</name>
<name sortKey="Monot, Marc" sort="Monot, Marc" uniqKey="Monot M" first="Marc" last="Monot">Marc Monot</name>
<name sortKey="Soutourina, Olga" sort="Soutourina, Olga" uniqKey="Soutourina O" first="Olga" last="Soutourina">Olga Soutourina</name>
</country>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Bouillaut, Laurent" sort="Bouillaut, Laurent" uniqKey="Bouillaut L" first="Laurent" last="Bouillaut">Laurent Bouillaut</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001043 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001043 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27297391
   |texte=   Control of Clostridium difficile Physiopathology in Response to Cysteine Availability.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27297391" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020